Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Fangfang Jian, * Hailian Xiao and Liangzhong Xu

New Materials and Function, Coordination Chemistry Laboratory, Qingdao University of Science and Technology, Qingdao 266042,
People's Republic of China
Correspondence e-mail: ffj2003@163169.net

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.045$
$w R$ factor $=0.114$
Data-to-parameter ratio $=18.1$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

4,4-Dimethyl-3-oxo-1-(1,2,4-triazol-1-yl)-pentan-2-yl N, N-dimethyldithiocarbamate

In the title compound, $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}$, the dihedral angle between the plane of the N, N-dimethyldithiocarbamate group and the plane of the triazole moiety is $9.96(2)^{\circ}$. There are weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ intermolecular interactions in the crystal structure, contributing to its stability.

Comment

As an important type of fungicides, triazole compounds are highly efficient and of low toxicity (Xu, Zhang et al., 2002; Xu, Lu et al., 2002; Zhao et al., 1998). At present, studies on triazole derivatives are mainly concentrated on compounds with triazole as the only active group. Reports of triazole compounds that contain both a triazole and another active group in a single molecule have rarely appeared. Dialkylsubstituted dithiocarbamate salts have also shown interesting biological effects (Gringeri et al., 1988). N,N-Dialkyldithiocarbamates have been known as broad-range fungicides and they have a different fungicidal mechanism from triazole compounds (Xu, Jiao et al., 2002). However, triazole compounds containing N, N-dimethyldithiocarbamate groups have rarely been reported. In order to search for new triazole compounds with higher bioactivity, the title compound, (I), was synthesized.

In the title compound, (I), the bond lengths and angles are normal in the tert-butyl group and triazole ring (Xue et al., 2000; Liu et al., 2002). The bond lengths and angles in the $N, N-$ dimethyldithiocarbamate group are in good agreement with an earlier report (Jian et al., 1999). Atom C10 lies in the triazole ring ($\mathrm{N} 2 / \mathrm{N} 3 / \mathrm{N} 4 / \mathrm{C} 11 / \mathrm{C} 12$) plane, and the deviations from the least-squares plane through the ring atoms are all smaller than 0.022 (3) \AA. All atoms of the N, N-dimethyldithiocarbamate group lie in a plane, and the largest deviation from the least-squares plane is 0.014 (3) \AA. The dihedral angle between the plane of the N, N-dimethyldithiocarbamate group and the plane of the triazole moiety is $9.96(2)^{\circ}$.

The packing is stabilized by weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ hydrogenbond interactions (Table 2) (Steiner, 1996; Jeffrey et al., 1985).

Received 12 October 2003

Accepted 13 October 2003
Online 23 October 2003

Experimental

The title compound was prepared by reaction of tert-butyl 1-bromo-2-(1,2,4-triazol-1-yl)ethyl ketone with a chloroform solution of 2,2-di-methyl-4-(N, N-dimethyldithiocarbamato)sodium. Single crystals of the title compound suitable for X-ray measurements were obtained by recrystallization from ethyl ethanoate/cyclohexane ($v / v=1: 3$) at room temperature.

Crystal data

$\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{OS}_{2}$
$M_{r}=300.44$
Monoclinic, $P 2_{\mathrm{d}} / c$
$a=12.315$ (3) A
$b=12.057$ (2) \AA
$c=12.532(3) \AA$
$\beta=118.55(3)^{\circ}$
$V=1634.5(8) \AA^{3}$
$Z=4$
$D_{x}=1.221 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Mo $K \alpha$ radiation
Cell parameters from 20
reflections
$\theta=2-11^{\circ}$
$\mu=0.32 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Pillar, colorless
$0.25 \times 0.20 \times 0.15 \mathrm{~mm}$

Data collection

Oxford Instruments point-detector diffractometer
$\omega / 2 \theta$ scans
Absorption correction: none
5132 measured reflections
3130 independent reflections
2189 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.025$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.114$
$S=1.02$
3130 reflections
173 parameters
H -atom parameters constrained
$\theta_{\text {max }}=26.0^{\circ}$
$h=-15 \rightarrow 0$
$k=-15 \rightarrow 15$
$l=-13 \rightarrow 16$
3 standard reflections every 100 reflections intensity decay: none

Table 1
Selected geometric parameters (A).

S1-C3	$1.780(2)$	$\mathrm{O} 1-\mathrm{C} 5$	$1.205(3)$
$\mathrm{S} 1-\mathrm{C} 4$	$1.810(2)$	$\mathrm{N} 2-\mathrm{N} 3$	$1.357(3)$
$\mathrm{S} 2-\mathrm{C} 3$	$1.651(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 A \cdots \mathrm{~S} 2$	0.96	2.45	$2.995(3)$	116
$\mathrm{C} 2-\mathrm{H} 2 A \cdots \mathrm{~S} 1$	0.96	2.24	$2.831(3)$	119
$\mathrm{C} 4-\mathrm{H} 4 B \cdots \mathrm{~S} 2$	0.98	2.57	$3.154(2)$	118

H atoms were positioned geometrically and were treated as riding on their parent C atoms, with $\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2$ or 1.5 times $U_{\text {eq }}(\mathrm{C})$.

Data collection: R-AXIS Software (Rigaku, 1997); cell refinement: $R-A X I S$ Software; data reduction: R-AXIS Software; program(s) used to solve structure: $S H E L X S 97$ (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1990); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors thank the Natural Science Foundation of Shandong Province (grant No. Y2002B06).

Figure 1
The structure of the title compound, showing 50% probability displacement ellipsoids and the atom-numbering scheme.

Figure 2
The packing of the title compound. Hydrogen bonds are shown as dashed lines.

References

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Gringeri, A., Keng, P. C. \& Borch, R. F. (1988). Cancer Res. 48, 5708.
Jeffrey, G. A., Malusynska, H. \& Mitra, J. (1985). Int. J. Biol. Macromol. 7, 336341.

Jian, F. F., Wang, Z. X., Bai, Z. P., You, X. Z., Fun, H.-K., Chinnakali, K. \& Razak, I. A. (1999). Polyhedron, 18, 3401-3406.
Liu, J. C., Guo, G. C., Ma, H. W., Yang, C., Zhou, G. W., Zheng, F. K., Lin, S. H., Wang, M. S. \& Huang, J. S. (2002). Chin. J. Struct. Chem. 21, 371-373.
Rigaku (1997). R-AXIS Software. Rigaku Corporation, Tokyo, Japan.
Sheldrick, G. M. (1990). SHELXTL/PC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

organic papers

Shedlrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Steiner, T. (1996). Crystallogr. Rev. 6, 1-35.
Xu, L. Z., Jiao, K., Zhang, S. S. \& Kuang, S. P. (2002). Bull. Korean Chem. Soc. 23, 1699-1701.
Xu, L. Z., Lu, X. L., Zhang, S. S. \& Jiao, K. (2002). Chem. J. Chin. Univ. 23, 419-422.

Xu, L. Z., Zhang, S. S., Li, H. J. \& Jiao, K. (2002). Chem. Res. Chin. Univ. 18, 284-287.
Xue, M. Q., Ren, J. S., Shen, Q. \& Lin, Y. H. (2000). Chin. J. Struct. Chem. 19, 23-26.
Zhao, J., Zhou, Z. Z., Peng, Y. B. \& Zhao, G. F. (1998). Huaxue Tongbao, 8, 3538.

